FRT Ghosts for watermarking Mojette Day

Benjamin CAVY

Polytech Nantes Monash University

5th February 2015

Acknowledgements and apologies

Acknowledgements:

- Imants Svalbe;
- Nicolas Normand.

Apologies:

- Poor English level on those slides;
- maybe some over-simplifications ...;
- ... and some inaccuracies.

That being said ...

- Context
- Ghosts
- Example
- Zero cross-correlation
- (Pseudo-noised) perfect sequences
- Cliques
- Conclusion

Context

(Pseudo-noised) perfect sequence

Clique

Ghosts Example Zero cross-correlation (Pseudo-noised) perfect sequences Cliques Conclusion

Correlation based watermarking

Objectives:

- Hide a mark in an image...;
- ...with minimal image modification...;
- …that can be detected easily using correlation.

Here:

- Mark : binary ghost / pseudo-noised perfect arrays;
- Watermarking : simple addition between motif and mark;
- ▶ Detection : correlation peak between watermarked image and motif.

What is a good mark? 2 properties:

- ► Good auto-correlation properties, for detection;
- ► Weak cross-correlation with other marks to avoid false positive.

Contex

Ghosts

Example

Zero cross-correlatio

(Pseudo-noised) perfect sequences

Clique

Ghosts

A ghost is a geometrical array that is 'invisible' along some angles

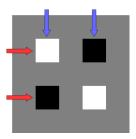


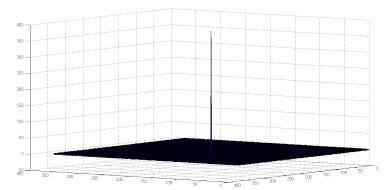
Figure: Ghost example white= 1 black= -1 grey= 0

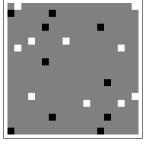
Ghosts presented here are of size $p \times p$ with p prime

Ghosts correlation

Main interests of ghosts (here):

- ▶ Made with weak values [-1, 0, 1] \rightarrow small image change;
- good auto-correlation.

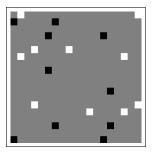



Figure: 373*373 ghost auto-correlation

Minimal and compounds ghosts

Minimal ghost : ghost that is invisible along n angles with $n \times 2$ points

Compound ghost: duplication of a minimal ghost in order to obtain a new motif



(a) Minimal ghost

(b) Compound ghost

Why do we use compound ghosts?

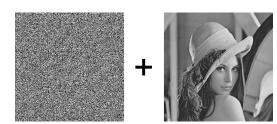
(a) Minimal ghost

(b) Compound ghost

Worse theoretical auto-correlation but better detection one embedded in an image

Contex

Ghost


Example

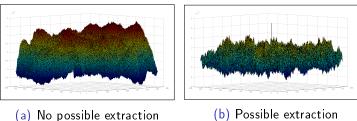
Zero cross-correlatio

(Pseudo-noised) perfect sequences

Clique

Insertion

(a) Marking by simple addition



(b) Watermarked image

Extraction

By looking for a peak in correlation between watermarked image and mark

Decision could use a threshold (peak to second peak ratio, merit factor, ...)

Contex

Ghost

Example

Zero cross-correlation

(Pseudo-noised) perfect sequences

Clique

Zero cross-correlation

It's possible to generate odd and even symmetry ghosts with zero cross-correlation (i.e. 0 everywhere)

Figure: Two ghosts that have zero-cross correlation

Context Ghosts Example Zero cross-correlation (Pseudo-noised) perfect sequences Cliques Conclusion

Merging without overlapping

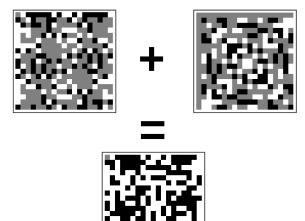


Figure: Merged ghosts : no overlapping!

Practical application : double watermark

Consequence of two previous points : possible to add two mark in a single image

ightarrow every mark can be detected as if it was alone

Contex

Ghost

Example

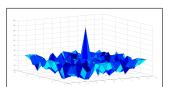
Zero cross-correlatio

(Pseudo-noised) perfect sequences

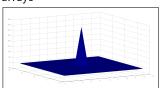
Clique

Ghosts

By shifting previous array in a particular way, it's possible to obtain pseudo-noised perfect arrays


Figure: 19×19 pseudo noised perfect array

Pseudo-noised perfect arrays


Pseudo-noised perfect sequences have superior auto-correlation properties

(a) 'Classic' compound ghost

(b) Pseudo-noised perfect arrays

Pseudo-noised perfect array vs ghosts

- Auto-correlation is better than for ghosts;
- a simple generation method exists;
- ▶ many $(C_{(p+1)/2}^{p+1})$ possibilities for p * p sequences.

Contex

Ghost

Example

Zero cross-correlatio

(Pseudo-noised) perfect sequences

Cliques

Cross-correlation of pseudo-noised perfect arrays

There is few cross-correlation patterns between pseudo-noised perfect arrays of size \boldsymbol{p}

On of these patterns is very interseting

Figure: Cross correlation of two 7×7 pseudo-noised perfect arrays 'best case'

No peak at all: no false positive risk

Cliques

Cliques are sets of pseudo-noised perfect arrays with this good cross-correlation pattern

Maximum clique size seems to be p for $p \times p$ arrays

 \rightarrow for 373 \times 373 pseudo-noised perfect arrays, it's possible to find sets of 373 of those arrays with this good cross-correlation pattern!

Contex

Ghost

Example

Zero cross-correlatio

(Pseudo-noised) perfect sequences

Clique

Conclusion

We achieved arrays with the two needed properties for correlation based watermarking

- Good auto-correlation : using ghosts, and pseudo-nosed perfect arrays;
- ▶ Poor cross-correlation : with cliques.

Moreover we found zero-cross correlation arrays, allowing us to mark images twice.

Any question?