Mojette day

Retrieval of rainfall fields over urban areas using tomographic processing from microwave communication links.

Bahtiyor ZOHIDOV

PolyTech Nantes, February 5, 2015

ARCHITECTURALES ET URBAINES

Little about me...

Accurate rainfall measurement is always problematic... The reason: It is highly variable in space and time.

MetOp Series

OAA)

Arthur Hou 1 July 2011

(JAXA)

Author: Jade, August 23, 2014

Why cellular network antennas...?

- ✓ Antennas are very close to the ground
- ✓ Dense in cities (covers ~90 % of worlds population)
- Operating at high frequencies where rain is a major source of signal loss

Transmitter	Receiver
transmission Attenuation of the signal	
Path length	
	-

Motivation...

Author: Jade, August 23, 2014

Our simulation framework

Cellular companies antennas in Nantes

b. Commercial microwave links at 18, 23 and 38 GHz over the urban area of Nantes, 2014.

page. 12

3. SOCIÉTÉ FRANÇAISE DU RADIOTÉLÉPHONE (SRF)

Our simulation framework

Our simulation framework

1. Approach 2. Study area Mobile Nantes **Network Antennas** Rainfall estimation 4. Algorithm 3. Data 1) Mojette Transform Signal attenuation due to rainfall 2) Statistical inverse

Electromagnetic scattering theory is the key point...!

Our simulation framework

1st Algorithm: Mojette Transform

- The sampling rate on each projection, which is no longer constant but depends on the chosen angle as $\frac{1}{\sqrt{p_i^2+q_i^2}}$.
- The number of bins, B(i), for each projection depends on the chosen direction vector (pi, qi), and for a P × Q image :

$$B(i) = (Q - 1)|p_i| + (P - 1)q_i + 1$$

Mojette Transform for rainfall...?

Challenges in Mojette case

Ill-posedness, N>M, where, N – number of pixels, M – number of data;

page. 21

• Non-uniform shape of links geometry (more challenging for Mojette);

Challenges in Mojette case

bn bn+1 =? q (p2, q2) bn Receiver (p1, q1) r5 / r1 r2 r3 **r**9 r6 r7 r8 r10 Oops.. How can we continue the r11 r12 r13 blue ray travelling in the green pixels? r7 r8 r18 r19 r16 r17 r13 р Rainmap **Transmitter**

- Not enough projection "rays";
- Not enough bins for projection (p,q);
- Improper geometry of ray (non-uniform);

page. 23

Rays dont cross the entire area

So, what to do ?

Solution: Why not to reconstruct partially? page. 24

Quality map at 2.0 km resolution

1. Create subgrids

2. Get Projection

3. Interpolate

4. Reconstruct

Choose projections and min number of bins page. 25

qf

Angular interpolation

Apply Mojette Filtered Back Projection

1. Create subgrids

2. Get Projection

3. Interpolate

4. Reconstruct

Apply Mojette Filtered Back Project

Initial results are encouraging from Mojette FBP

page. 29

Initial results are encouraging from Mojette FBP

Evaluation of the model capability/limitations

Root Mean Square Error (RMSE): RMSE =
$$\sqrt{\frac{1}{n}\sum_{i=1}^{n} (r_i - r_i')^2}$$

	Lightrain	Shower	Organisedstorm	Unorganisedstorm
T1	40	38.84	26.71	35.6
T2	41.76	38.98	40.25	33.93
T3	40.13	39.91	34.45	33.27
T4	39.32	37.78	31.10	33.75
T5	31.81	38.49	41.45	34.01

2nd Algorithm: Statistical inverse method

Based on: Generalized Nonlinear Least Square method

2nd Algorithm: Statistical inverse method page. 32

Grid Nesting method

Discretization of microwave link for one pixel at 2, 1, 0.5 km.

Results by Statistical Inverse model

page. 33

Estimation at different resolutions: 1, 0.5 km

Further work

page

Mojette case:

- To improve subgrid choice procedure
- To improve the way of taking projection using interpolation.
- To apply Spline 0 and compare Angular interpolation
- To apply Iterative Mojette Reconstruction

Statistical inverse case

- Has been applied to ~200 rainfall events
- Consistent with radar data.
- Should applied to another cities in France
- Should be compared to Mojette performance

page. 35

THANKS FOR YOUR ATTENTION

Do not be angry with the rain; it simply does not know how to fall upwards

Vladimir Nabokov

