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Introduction
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Radon transform

The Radon transform (1917) represents a function f by its
integrals along straight lines (projections) :

[Rf ](t, θ) =

∫ ∞
−∞

∫ ∞
−∞

f (x , y)δ(t − x cos θ − y sin θ)dxdy
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Radon transform
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Sinogram and tomography
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Figure: (a) Shepp-Logan phantom. (b) Sinogram

Sinogram Set of projections of an object by the Radon
transform. Each line represents a projection

Tomographic reconstruction Inverse problem of object recovery
from the sinogram.
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Sinogram rotation

In Radon sinogram space

I The space is cyclic in angular direction with π-periodicity

I A θ angle rotation corresponds to an offset of the first
projection (cyclic translation)
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Mojette transform (Guedon, Barba et Burger, 1995)

I Discrete image f (k , l)

I Discrete directions (p, q) with p and q coprime integers

I The projection values (bins) correspond to the sum of the
pixels sampled by the discrete ray

[MTf ](b, p, q) =
P−1∑
k=0

Q−1∑
l=0

f (k, l)∆(b + kq − lp)
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Rotations in Mojette projection space
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Rotation in Mojette projection space
Inspired by FRT space transforms (Svalbe, 2011), let us define a
rotation in Mojette space. Every projection is transformed into a
new projection with a new direction. Revertilibity is ensured by the
upscale.

Connex pixels of the image are not connected (in the common
sense) anymore after a (p, q) rotation, but are aligned on a
(p, q)-directed line. 10/27



Mojette rotation : algorithm

Algorithm for the upscaled Mojette rotation :

For each projection P of angle (p, q).

1. Generate the new projection P ′ of angle (p′, q′)

2. 1D convolution to fill “empty” space

Then, reconstruct the image from new projections.
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Computation of the new projection direction

I (p, q) rotation matrix : R(pθ,qθ) =

(
pθ −qθ
qθ pθ

)
I New projection direction (p′, q′) :(

p′

q′

)
=

(
pθ −qθ
qθ pθ

)(
p
q

)
=

(
ppθ − qqθ
pqθ + qpθ

)
I To ensure p′ and q′ are coprime, we normalize them by their

greatest common divisor :(
p′′

q′′

)
=

1

gcd(p′, q′)

(
p′

q′

)
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New projection computation
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New projection computation

I Bins values don’t change during the rotation process because
the same pixels are sampled (or sometimes only null valued
additionnal pixels).

I We get the new projection by oversampling the initial
projection with factor :

S =
p2
θ + q2

θ

pgdc(p′, q′)
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Filling the new projections

I Oversampling → A lot of null pixels

I Interpolation by weighting each pixel by the overlapping area
ratio between a “meta” pixel corresponding to the initial pixel
rotation and the initial grid
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Convolution kernel computation

Problem : how to compute efficiently the overlapping area between
black pixels and red “meta-pixel”

I Meta-pixel size : |pθ|+ |qθ|
I For each pixel (k, l) of the convolution kernel, we compute the

distance between its center and the closest edge (red colored
on the figure) :

dpθ,qθ(k , l) =

∥∥∥∥(−qθ pθ
pθ qθ

)
·
(
k
l

)∥∥∥∥
∞

(1)

xpθ,qθ(k, l) =
p2
θ + q2

θ

2
− dpθ,qθ(k , l) (2)
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Convolution kernel computation

I The distance between the center of a pixel and the closest
edge gives the coordinate along the projection (integration
limits)

I Pixel area ⇔ projection area (uniform unitary pixel).

I For each pixel, the overlapping area is then given by :∫ x

0
Trappθ,qθ(t)dt

I Easy to compute since we have analytic expression of the
wedge
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Wedge integration
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Figure: Projection of a pixel in the direction (3, 2) and its integral (in
blue)
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Wedge integration

Closed formula to compute the area from xpθ,qθ(k, l) :

Kpθ,qθ(x) =



2|pθqθ| − K (pθ, qθ,−x) if x < 0

|pθqθ|+ 2x min{|pθ|, |qθ|} if 0 6 x <

∣∣|pθ|−|qθ|∣∣
2

|pθqθ| − x2 + (|pθ|+ |qθ|)x

−
(
|pθ|−|qθ|

2

)2
if

∣∣|pθ|−|qθ|∣∣
2 6 x < |pθ|+|qθ|

2

2|pθqθ| elsewhere.
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Discrete formulation

I The discrete wedge can be computed from discrete
convolutions of discrete p and q wide Haar functions :

Trappθ,qθ = {(1 1)} ∗ (1 · · · 1) ∗ (1 · · · 1)

I The samples obtained are exactly those needed for the
integration → fully discrete process

I Mojette projection of the convolution kernel = 1D convolution
kernel to apply on projections
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Discrete formulation : example

For angle (3, 2) rotation :

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

1

3

4

(1 1) ∗ (1 1 1) ∗ (1 1) = (1 3 4 3 1) =⇒ (1 4 8 11 12)
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A few examples

(a) (b) (c)

(d) (e) (f)

Figure: (a) Original image 32× 32. (b,c,d,f) Mojette space rotations
(2, 1), (1, 3), (6, 1).
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Conclusion and perspectives
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Conclusion

I Mojette space rotation method
I Based on discrete geometry
I In Mojette projection space

I Revertible rotations

I Well suited for coupled tomography and rotation problems

I Future works : 3D extension (not trivial !)
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Perspectives

Other geometric transforms :

I Integer vector (di , dj) translation
I Shift of every bins :

∆b(p,q)(di , dj) = pdj − qdi

I Upscaling of factor s ∈ N∗
I Oversampling of projections :

b′ = b × s

⇒ Definition of a similarity group in the Mojette projections space
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Perspectives
Application perspective : acquisition registration

−→

I Used to determine the similarity between to images, regardless
of their orientation and scale.

I Used to estimate the affine transform parameters between the
two images or volumes

⇒ Directly from the acquired Mojette projections, without the
need to reconstruct the whole volume
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