Introduction

Research and development project Mojette transform on regular non-cubic lattices

J. Thomas C. Rougale

Polytech Nantes

Thursday 5th February 2015

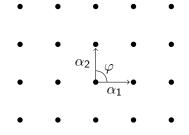
- Introduction
 - Statement of the problem
 - Objectives
 - Lattices
- 2 Proposals
 - Comparison criteria
 - Test case
- Results
 - Redundancy
 - Bins number variance
 - Pixels per bin mean
 - Pixels per bin variance
- 4 Conclusion

- Introduction
 - Statement of the problem
 - Objectives
 - Lattices
- - Comparison criteria
 - Test case
- - Redundancy
 - Bins number variance
 - Pixels per bin mean
 - Pixels per bin variance

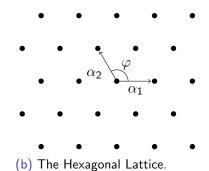
Statement of the problem

- Study of the Mojette transform
- Mostly used on cubic lattices
- Study on non-cubic lattices
- Performance comparison between different lattices

- Introduction
 - Statement of the problem
 - Objectives
 - Lattices
- - Comparison criteria
 - Test case
- - Redundancy
 - Bins number variance
 - Pixels per bin mean
 - Pixels per bin variance


Objectives

- Study of the different lattices
- Selection of a non-cubic lattice
- Compare the performance of the Mojette transform between the cubic and non-cubic lattices
- Find some comparison criteria.


- Introduction
 - Statement of the problem
 - Objectives
 - Lattices
- 2 Proposals
 - Comparison criteria
 - Test case
- Results
 - Redundancy
 - Bins number variance
 - Pixels per bin mean
 - Pixels per bin variance
- 4 Conclusion

Lattices

What is a lattice?

(a) The Square Lattice. $|\alpha_1| = |\alpha_2|, \ \varphi = 90^{\circ}.$

 $|\alpha_1| = |\alpha_2|, \ \varphi = 120^{\circ}.$

Figure: Representation of different lattices

- Introduction
 - Statement of the problem
 - Objectives
 - Lattices
- 2 Proposals
 - Comparison criteria
 - Test case
- Results
 - Redundancy
 - Bins number variance
 - Pixels per bin mean
 - Pixels per bin variance
- 4 Conclusion

The standard definition of redundancy is:

$$Red = \frac{nb_{bins}}{nb_{pixels}} - 1 \tag{1}$$

We define the Bins number variance as:

$$Var(B) = \frac{1}{n} \sum_{i=1}^{n} (B_i - B_m)^2$$
 (2)

with

- n projections
- B_i the number of bins on projection i
- \bullet B_m average number of bins

We define the pixels per bin mean as:

$$Mean(pixels per bin) = \frac{1}{n} \sum_{i=1}^{n} b_i$$
 (3)

with

- n the total number of bins
- b_i the value of the bin i

We define the pixels per bin variance as:

Variance(pixels per bin) =
$$\frac{1}{n} \sum_{i=1}^{n} (b_i - Mean(pixels per bin))^2$$
 (4)

with

- n the total number of bins
- b_i the value of the bin i

Introduction

utime

- Introduction
 - Statement of the problem
 - Objectives
 - Lattices
- 2 Proposals
 - Comparison criteria
 - Test case
- Results
 - Redundancy
 - Bins number variance
 - Pixels per bin mean
 - Pixels per bin variance
- 4 Conclusion

Test case Grids construction

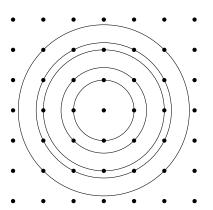


Figure: Square grid construction

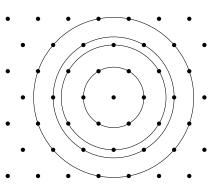


Figure: Hexagonal grid construction

Test case Selection of projection

$\mathsf{Theorem}$

Complete reconstructability theorem: Statement 1: Both propositions are equivalent:

- f(k, l) defined on the convex G is reconstructible by $\{proj_{p_{i},q_{i}}, 1 \leq i \leq I\};$
- R constructed by I dilations ser $\{O, (p_i, q_i), 1 \le i \le I\}$.

Statement 2: Both propositions are equivalent:

- G is reconstructible by $\{proj_{p_i,q_i}, 1 \leq i \leq I\}$;
- the erosion of G by R is null.

Test case Selection of projection

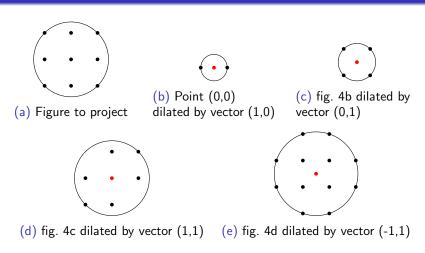


Figure: Example of dilatation in square lattice

Test case Selection of projection

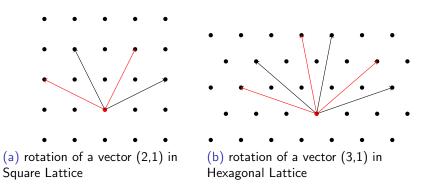


Figure: Rotation example of a direction

- Introduction
 - Statement of the problem
 - Objectives
 - Lattices
- 2 Proposals
 - Comparison criteria
 - Test case
- Results
 - Redundancy
 - Bins number variance
 - Pixels per bin mean
 - Pixels per bin variance
- 4 Conclusion

Results Redundancy

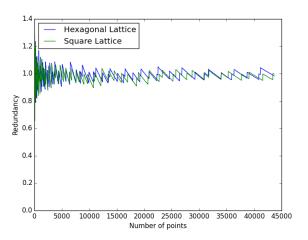


Figure: Redundancy

- Introduction
 - Statement of the problem
 - Objectives
 - Lattices
- 2 Proposals
 - Comparison criteria
 - Test case
- Results
 - Redundancy
 - Bins number variance
 - Pixels per bin mean
 - Pixels per bin variance
- 4 Conclusion

Results Bins number variance

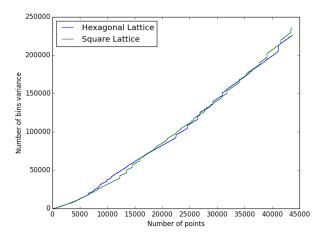


Figure: Bins number variance

- Introduction
 - Statement of the problem
 - Objectives
 - Lattices
- 2 Proposals
 - Comparison criteria
 - Test case
- Results
 - Redundancy
 - Bins number variance
 - Pixels per bin mean
 - Pixels per bin variance
- 4 Conclusion

Results Pixels per bin mean

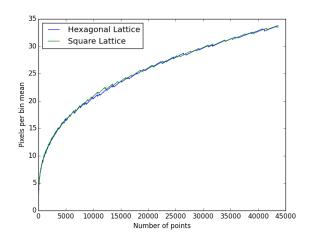


Figure: Pixels per bin mean

- Introduction
 - Statement of the problem
 - Objectives
 - Lattices
- 2 Proposals
 - Comparison criteria
 - Test case
- Results
 - Redundancy
 - Bins number variance
 - Pixels per bin mean
 - Pixels per bin variance
- 4 Conclusion

Results Pixels per bin variance

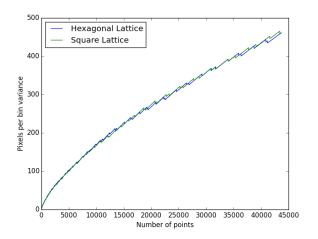


Figure: Pixels per bin variance

- These results are not conclusive
- study in 3D?

Conclusion

Do you have any questions ?