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ABSTRACT

The goal of this paper is to describe a new fully-reversible image transform specifically
designed for an efficient (pseudo-critical) coding while preserving a psychovisual Fourier
domain description. There is now strong evidence for the presence of directional and angular
sensitivity in the cells of the human visual cortex and the representation proposed here has for
main objective to respect this human like filter bank. The decomposition is performed using a
discrete Radon transform for the angular patches and by splitting each projection with a ID
spline wavelet for the radial part. Consequently, the whole algorithm is performed in the spatial
domain. Finally, we show that the transform is both well-suited for psychovisual quantization
and channel adapted coding.

Keywords: Discrete Radon transform, Psychovisual decomposition, Wavelet decomposition,
Image coding, source-channel adapted coding .

. 1. INTRODUCTION

1.1 Human visual system decomposition

Taking into account the human visual system is of prime importance for implementing an
image coding scheme which only keeps the main content of the possibly visible information. As
described in the literature, the foveal response of the human visual system (HVS) can be
modeled as a filter bank 1,2. A first set of psychovisual experiments 2 demonstrates the
radial/angular channel description in the spatial Fourier domain which is presented in Figure 1.
Each patch is localized by two numbers standing for the corona and angular location. The 2D
Fourier transform (FT) of the initial image can be dispatched according to these regions and
subsequent filter banks are computable as done in 2. The original image is then splitted into sub-
images corresponding to each patch by signal processing tools. Then the quantization is
performed not on the sub images values but on a local contrast scale 2,3. This local contrast
explains the value for a pixel in the original image as the ratio of the pixel luminance in a sub-
image, corresponding to the (ith radial band, jth angular sector) patch, divided by the pixel
luminance relative to the sub-image reconstructed from its lower-frequency (Osk-ci) coronas (i.e.
the local mean luminance value)

Li.j(m,n)C· (m n) =I,J ' (1)i-l
L L Lk.l(m,n)

k=O 1
The major result with this contrast quantization is that a psychovisual quantizer built up on these
premises gives linear laws for each patch. This local contrast definition is also consistent with
the way the HVS behaves and gives a true psychovisual quantization of the image. However, the
corresponding coding scheme needs a Fourier transform of the luminance image before
performing the patch coding. The quantization step obtained from (1) is implemented in the
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spatial domain thus involving an inverse Fourier transform. The decoding scheme is also based
on Fourier direct and inverse transforms.

~ 28.2 cy/do

Figure 1 : The psychovisual decomposition in the spatial frequency domain

1.2 Fourier / Radon transform

~. Let f(x,y) be a continuous image. Its Radon transform 4 noted Rf is composed of all the
i': projections of the image along an axis t for every angle S E [O,n[, i.e.
r +00 +00 (2)
1); Rf(x,y) = Pa (t) = J J f(x,y) 8(t - xsinS+ycosS) dxdy .

î The inverse transform ex~;s b~this is generally an ill-posed problem. This ill-posed nature can
be overcome in the discrete case. The link between Fourier and Radon transform is given by the
Central Slice Theorem. Ifwe note Pa(v) the ID Fourier transform of the projection PaCt)and

F(À,J.l)the 2D Fourier transform of f(x,y), then we have,
Pa (v) = F(À=v sinS, J.l=-v cosû). (3)

1?is theorem explains why the Radon space is well adapted to the RVS angular decomposition
since each central slice in the Fourier domain is directly related to a projection of the image. In
practice, a NxN digital image gives a discrete Fourier transform onto a Cartesian grid. By
~hoosing projections whose ID Fourier transform samples exactly matches the grid, an exact
image transform will be defined. Benefits from the use of a discrete Radon transform lie in
defining a spatial implementation and permitting an exact representation of the original signal. A
direct consequence is that the scheme is implemented with fast algorithms.

2. THE DISCRETE TRANSFORM

2.1 The direct transform
The definition of the discrete transform starts from the discrete quantized image and gives

discrete integers. Following Katz 5, we shall only use specific angles of the form tan S = £q
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where p,g E Zand prime each other (GCD(p,g)=l). To avoid interpolation onto the projections
the sampling rate is also angle-dependent. The corresponding discrete Radon transform is
defined as a simple pixel summation by

~l~l
Raf(k,l) = projp.q (m) = 2.. 2.. f(k,l) Mm - kp + ql) ,

k=O 1=0
(4)

with
L1(m - kp + ql) = 1 if m = kp - ql and 0 elsewhere. (5)

For a pixel size of L1xL1, projp.q (m) is sampled at màlcosê -sinêl when e E [O'IL and at

mzxlcosû +sinûl if e E [I,IT[. This relationship is related to (Eg. 4) by sine = P and cosê
.. ' .Jp2+g2

= g . An example is given in Figure 2.
.Jp2+g2

i
I p=3

q=2

Figure 2 : The Discrete Radon transform computed for two angles

The main advantage of this definition is that a projection cell value is simply obtained by
integer addition of pixel values. The main differences compared to standard discrete Radon
. transforms lie first iri the angular-dependent sampling rate and secondly in the specific angle
values which forbid every implementation for tomographic reconstruction. Notice that the
transform is a discrete to discrete operator as demonstrated by the algorithm described in
Appendix A. It is also of importance to remark that some projection cells will corresponds to no
pixel in the image because of the pig ratio and thus are loaded with a null value (see Figure 2, for
p=S, q=2). To fully describe the transform, the number of projections (for a given image size N)
and their directions have to be derived.

Katz has shown that, according to the image resolution, a bound on the number M of
projections necessary for a reversible transform can be found. More precisely, Katz's theorem

says that for a set of (Pi,gi), the selected integer pairs such that tanei-~ii, the null space of the

M M
discrete Radon transform is empty if the image size is bounded by N < 1+ Max(L: lp.l, L: lq.l),

i=l i=l
Even if this ineguation does not give the lowest bound for the number of angles M with respect
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to N, it allows ~or a rough idea on their relationship as given by Table 1 where an arbitrary
choice (not optimal) on the (Pi,qi) has been made.

M 4 7 11 18 29
N 3 8 16 32 63

Table 1:Bounds on the number of angles M versus the image size achieved

Notice that no choice on the projection angles is made by this bound. For instance, two
projections are computed for a 2x2 image in Figure 3: selecting 8=0 and rrJ2 (4-a) does not lead
to a unique solution wheras it is the case in (3-b) for 8=n/4 and 3n/4. However, the number of
samples is no longer critical in this case. It is a pseudo-critical sampling as in (3-c) by choosing
angles 8=0 and n/4 (5 samples in the transform domain for 4 initial values). The first choice
(3.a) does not produce a unique transform as demonstrated by its Fourier transform: the sum of
all cells in a projection (which equals the sum of pixels in the image) is a redundant information
contained in the sample value at the origin of the Radon domain: we end up with only 3
decorrelated samples. On the contrary, configurations (3.b) and (3.c) are acceptable because
there are enough decorrelated samples.

nu a+b a+b

a-d b+c
... I I

c+d c+d

(3-a) no unique solution (3-b) unique solution (6 samples) (3-c) unique solution (5 samples)
Figure 3 : two projections on a 2x2 image

The Radon transform is the most appropriate tool for describing the angular features of
the psychovisual patches. Concerning the radial part, it is well-known that a multiresolution
analysis uses higher and higher frequencies with increasing resolution. Defining basis functions
onto a disk domain would give us the final patches in the Fourier domain. However, due to the
different sampling path in each projection and the fact that different projections have a different
number of samples, the covered area is a square which is also consistent with the Central Slice
Theorem.
Notice that me, the number of bins onto the projection, depends on the (p,q) values and equals

me = 1+(N-1).(lpl+lql). (6)
So the smallest (p,q) values produce the highest number of summed pixels in a bin with the
lowest II1q value. On the other side, for high (p,q) values (i.e. Ipl+lql == N) me is roughly the
same as the pixels number: a bin value corresponds to only very few pixels. This will be the key
point for the inverse transform. Another crucial point is the choice of the set of (p,q) values. As
shown in Figure 3 for N=2, {(O,1) (1,1)} and {(1,1),( -1,1)} are two sets providing the unique
solution. The choice of the projection set leads to the algorithm complexity to efficiently
solve for the inverse transform. At this point, an elegant solution uses Farey's series. A Farey

series of order N is the set FN of irreducible ratios .P. in [0,1] (q ::;N) arranged in increasingq

d F
· F (Olll121323451)Th .. .or er. or instance, 6 = 1"6"5"4 3" "5 2: "5 3" "4 "5 "6 1· ere are interesting properties on
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FN like the fact that two following elements £ and ~ verify p'q-pq'=l. Another moreq q

simplistic choice would be based on powers of 2 like (T ~ ~ ~ t)· This is not very interesting
on the psychovisual side: the angles have to be nicely disposed into [O,TC[ to reduce the non-
regularity of the grid obtained in the Fourier domain: this can be precisely obtained with the
Farey's angles.

1.

.

:;

, I

The direct transform, as described in Appendix 1, has a complexity order on Q(MN2)
where M is the number of projections and N2 the pixel number.

2.2 The monoresolution inverse transform

A generic algorithm
The computation of the inverse transform lies in inversing a linear system Axeb, where

the matrix A is N2xN2.We avoid solving for the inverse matrix (which is nonetheless very
stable in this case) by ordering the relative degree of pixels' summation onto the projections. The
image comers are first reconstructed since directly corresponding to bin values. We then take
bins containing higher and higher number of pixels and solve at each time triangular systems
which are easy to inverse (only 1 and °values). As an example, we showed that for a 32x32
image (N=32) a set of angles e such that qe [0,4] and pE [-4,4] is larger enough and the solution
. b . ki h e 0 TC TC 3TC) H . h . .ISa tamed without even ta mg t e angles ( = '2' 4' 4' owever, even WIt this small set of
angles, the total number of bins is almost three times the number of pixels. Since a pixel
reconstruction only use already reconstructed pixels and a single element of a projection, the
non-relevant bins can be omitted (not transmitted). In this case, the location of each transmitted
bin has to be known by the receptor to avoid the transmission of a data structure.

I
reconstruction
order,

. I
first pixel to be i
reconstructed i

I
I

last pixel to be :I,i

reconstructed

•
Figure 4 : The inverse transform progression

An implementation based on sub-images
This simple idea was directly taken from the standard block cosine transform. The initial

image is splitted into square sub-images and the transform is applied onto each data block.
Algorithms for the inverse transform corresponding to N=4, 8, 16 and 32 were obtained. A sub-
image of dimension 32x32 (N=32) was taken using angles picked up in the Farey's series F4.
Each pixel (i,j) of the sub-!ma~e is co~put~d using a single cell element and a number of other

pixels of the order of inf{~, !:!.:i}+inf{~, !:Si}. The number of compulsed values ranges from 1p q q p
(image corner) to N (image center), so the algorithm order is in between N2 and N3.
Since we only use additions and subtractions to solve for any linear systems, the unicity of the
solution is guaranteed. The generalization to every rectangular size has also been found.
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However, mathematical principles behind that algorithm come from number theory and a detailed
proof is beyond the scope of this paper.

The correspondence between Fourier and Radon transforms extends the block splitting.
The projection can also be quantized and only significant variations transmitted. When the
projection is decomposed into low and high resolution parts with a dyadic scheme, its high-
frequency part can be zero and has not to be transmitted.

2.3 The multiresolution inverse transform

The multiresolution analysis can drastically reduce the amount of transmitted samples. It
also corresponds to the final psychovisual patch splitting which allows for a quantization using
the local band-limited contrast

From the full-resolution image (supposed square here for simplicity), the NxN pixels are
transformed into projections by the direct transform. We assume here to compute enough
projections to cover the psychovisual domain and give back the unique solution. Each projection
is splitted into dyadic low-res(olution) and high-res parts by the use of a ID scaling function and
its wavelet counterpart (noted We in the following). We use a cubic cardinal spline scaling
function and its associated wavelet to perform this decomposition''. This biorthogonal quadrature
mirror filter has two interesting properties: the associated scaling function is very close to the.
ideal sine filter (as described in Figure 5) and the wavelet rapidly vanishes in the spatial domain.
Notice also that the wavelet is defined for each projection since the cut-off frequency Fm(S) is

related to the angle Si= atan:ii.Thus even if the number of bins depends on the considered
projection, the dyadic decomposition can be applied.

Dhigh-res part
low-res part

Figure 5 : Splitting the projection line using the cubic cardinal spline wavelet transform

The spline order rules the transition zone between two adjacent coronas and we obtain a
2-D dyadic splitting of the HVS-plane because of the relative cut-off frequency of each angle as
described in Figure 6.

Now, the low-res projections can be examined as a whole corresponding to a low-res image at

resolution ~x~. However, there are too many samples and some projections can be discarded
without jeopardizing the unicity of the solution for the low-res image as shown in Figure 6.
Interestingly enough, we are able to reconstruct these projections by using the inverse transform
at low resolution and recomputing the transform at the discarded angles: these projection parts
do not have to be transmitted since computable. This process can be recursively use to restrict
the transmission to a pseudo-critical sampling while preserving the quasi-dyadic psychovisual
scheme. For instance, as the sum of cells in each projection is constant since corresponding to
the sum of pixels in the image or the central point in the Fourier domain, it is not necessary to
transmit this value M times but only once.
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Figure 6 : The corresponding decomposition with 2 levels of frequencies.

The inverse transform with a multiresolution analysis is easily described. We start for
instance with a 2x2 image and compute some new low-res projections. Each of these projections
are separately grouped with their (4x4) high-res transmitted counterparts. On this riew set the
transform is recomputed giving the 4x4 image and the process goes on. In other words, the
reconstruction of the image with a multiresolution scheme use both the direct and inverse
transform at each resolution. The low computation order for both transforms is then a key point
here.

3. PSYCHOVISUAL CODING SCHEME

3.1 The coding scheme
From the direct transform and the mono- and multi-resolution inverse transforms, the

coding scheme is easily deduced. For sake of simplicity, we restrict here to only two squared
coronas. The first step consists in obtaining the set of projections from the original image. Each
projection is then splitted into high-res and low-res parts using the wavelet transform. The third
step groups all the projection parts belonging to the same psychovisual patch (angular range,
radial range). Then the psychovisual quantization takes place as explained in 2. The local contrast
can be directly derived here since all the computations are done in the spatial domain. The
corresponding scheme is summarized in Figure 7.

I ~IHFrange
I P81(m)

W8I i [8b83]
I I

i f(k,l)
I P82(m) ,

ILF rangeR8 - - : W82I - ~
i 1[81>83]i

.. __ ._------
i' P83(m) I,

: W83I ...
I ~
I

P8M(m) iW8M
~... ~I

1::1
.~
Id

·S
~

transmis....
0'

i
.~
s
~
O'l
Q.,

sion

Figure 7 : The Radon-psychovisual coding scheme
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The luminance transformation applied onto the original image in order to quantize an
effective local contrast can also be done here.

3.2 The decoding scheme

As expected, the decoding scheme proceeds in the exact reverse way. Figure 8 describes
the corresponding operations. When a patch has been received, the inverse quantization gives the
(low-res and high-res) projection parts.

HF range
~~

pelem)W81
[81,83]

I W82 I
Pe2(m)

transmission ~ f(k,])
~ I W83 i pe3(m) ....

!

..... IW8M
peM(m)

Figure 8 : The Radon-psychovisualdecoding scheme

Each projection is then builded up using the biorthogonal transformation. Like in the
multiresolution inverse transform, the missing low-res projection parts are reconstructed using
the direct transform of the low-res image. When all the projections are reconstructed, the inverse
Radon transform is applied.

Associating portion of projections before quantization can be represented in the Fourier
domain as shown in Figure 9. Each grey level corresponds to projection parts inside a patch
which have been quantized using a different psychovisual quantizer law. The angular range is
then the same as used for the previous decomposition 2, while the radial range is slightly
different since the dyadic scheme on each projection induces a square partition instead of regular
(disks) coronas .

Figure 9 : The corresponding psychovisual decomposition with 2 coronas.
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4. DISCUSSION

4.1 Results

The direct transform has been implemented and its rectangular generalization to any
image size is obvious from the algorithm given in Appendix A. The inverse mono-resolution
transform has been implemented for sub-images of size 42, 82, 162, and 322. We thus
reconstructed images with the transform. Moreover, a generalization of the inverse transform for
any image dimensions has been found and is currently under test. We actually split the images
into 322 square sub-images and perform the transform and its inverse on each sub-image. This
dimension is not larger enough to fully use-the multiresolution inverse transform. By nature, the
transform is exact and since no quantization has been made, its effects are not yet understood.

4.2 Differences with the classical psycho visual scheme

The first main difference between the psychovisual scheme described in 2 and this one is
the substitution of the disk support by a square one. There are no obvious reason for the eye
directional isotropy not to be kept in the images. Moreover, the classical psychovisual scheme
takes profit of this property (visual information not generally seen) for discarding the area
between the square and the disk (high frequencies in the four corners). However, the present
scheme can be used when no specific part of information has to be removed. This is precisely
the case for medical images or image classes where a detection task has to be done on the image.
If the signal to be detected belongs to the corner regions it could be detected with this kind of
coding scheme.

The second difference between a classical psychovisual scheme and this one lies on the
radial expression of the initial information for the latter. As a matter of fact, the classical
transformation used for coding employs a 2D separable Fourier transform of the original image
before reducing the frequency domain to the unitary disk. Unfortunately, to split the disk into
several radial/angular patches a radial/angular grid can summarized the initial information in a
better way. In the presented scheme, we eventually implement the exact reverse situation by
keeping the square domain but partitionning it in a radial way. The obtained lattice is not a
regular lattice but it perfectly matches the partition constraints and the dyadic scheme. By mixing
the radial discrete grid with a still separable grid in the Fourier space this representation
simplifies the 2D signal processing.

The third interesting point is that fast algorithms are obtained with the new transform.
The previous representation can be implemented with a fast Fourier transform if the image
domain has width and height sizes which are powers of two. This leads to algorithms of order
n.log-n which have to be implemented twice for the direct and inverse transform. For other
cases, a prime number decomposition of the width and heigth has to be used. The Radon
transform implementation can be done for every rectangular images without any changes in the
algorithm. Moreover, the spatial implementation (Radon and wavelet transform) leads to fast
algorithms.

An advantage remains for the classical psychovisual transform compared to this new
scheme. This is the adequation of the Fourier plane cutting up with the psychovisual experiments
and the associated quantization laws. We do not know if the square splitting will keep linear
these quantization laws but it would be expected some degradations in the linearity.
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4.3 Channel-adapted coding scheme

A very nice feature of this algorithm is the redundancy introduced during the
transformation step. Contrarily to most transforms classically used, the number of projections
can be higher than required for the inverse transform. In the context of high speed networks like
B-ISDN, the redundancies classically introduced by the network protocol are mostly relaxed to
meet real-time constraints on data exchanges. The higher protocol layers have to choose if these
information protection mechanisms meet the real-time constraints. For image transport with this
kind of coding, we are able to relax such constraints. In effect, if a projection has not been
correcly transmitted, any other projection can replace it.

5. CONCLUSION

In this paper, we presented a new discrete transform and its inverse based on an exact
discrete Radon transform. This transform is well adapted to decompose the visual information
and do not need a Fourier transformation of the data. The direct transform only uses projection
angles which tangent is an integer ratio. The inverse transform was presented both from a mono-
and multi-resolution analysis scheme. The latter uses the direct transform to generate low-
resolution projection which are not transmitted. The 2D multiresolution analysis is decomposed
into M different ID multiresolution decompositions. The psychovisual coding scheme is then
obtained from a radial/angular information decomposition where the Radon (respectively the
wavelet) transform provides the angular (resp. the radial) decomposition. By applying the Radon
transform followed by the wavelet decomposition, the visual patchs are built and can be
quantized. The decoding scheme proceeds in the same way. This psychovisual coding scheme is
also well-adapted to high-speed network transmission due to the redundancy directly introduced
in the original transformation.
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ApPENDIX PROJECTION CODING ALGORITHM

Radon (N, p, g)
pix f- 0 /pixel index in the image/
bin f- 0 /bin index onto the projection/

if (pzû) then start f- 0 fif e E [O,n:f2[ f

else start f- p.ï l-N) /if ~ E [n:/2,n:[f

for i f-O to (N-I) do
bin f- start + i.p
for jf-O to (N-l) do

projection(bin) +f- image(pix); bin +f- q; pix +f- I

end for

end for
end Radon
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